
O-Ai~i ~ METHODOLOGY(U) UNIVERSITY OF SOUTHERN CALIFORNIA MARINA

DEL REY INFORMATION SCIENCES INST M S FEATHER APR 84
UNCLASSIFIED ISI/RS-83-i2 M 3-S - i--033F92 NL

OEM[

-. r.

:t3i .. -

;',4

. . , _ MICROCOPY RESOLUTION TEST CHART

, .n NATIONAL BUREAU OF SADRS16

.;%

11" H%

...

April 15JK4

%/

of Soulhern k
Ca,' forriau

Martin S. Feather

Reuse in the Context of a
* U' Transformation Based Methodology

Reprinted from Proceedings of the Workshop on Reusability
___ in Programming, Newport, Rhode Island, 7-9 September 1983.

II

Cp..

-PA*
A

LA.

dl~~AA SCIE984 2112211
INSTITUT

466LmrUj 1ajAam e elal na09169

.* L5i22

84 0-5~

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (W"on Dots Entered) ___________________

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED 0o

Reuse in the Context of a Transformation Based Methodology Research Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORt'e) S. CONTRACT OR GRANT NUMBER(s)

Martin S. Feather MA0 1C03

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

USC/Information Sciences Institute AE OKUI UBR

* 4676 Admiralty Way
Marina del Rey, CA 90292-6695 pop______________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency April 1984
-1400 Wilson Blvd. 13. NUMBER OF PAGES

*Arlington, VA 22209 15
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

I~DECLASSIFICATION/DOWNGRADING
SCHEDULE

1S. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different fromn Report)

..

IS. SUPPLEMENTARY NOTES

This report is a reprint of a paper that appears in the proceedings of the Workshop on Reusability in
Programming, held in Newport, Rhode Island, 7-9 September 1983. The workshop was sponsored by
ITT Programming, Stratford, Connecticut.

19. KEY WORDS (Continue on reverse aide It neceesary and Identify by block number)

maintenance, program development, program specification, program transformation. reusability '

* 20. ABSTRACT (Continue on, seea ide if necessary and Identify by block number)

(OVE-R)

DD I ON7 1473 EDITION OF I NOVS IS 1 OBSOLETE Ucasfe
S/N 102- 04- 601SIECURITY CLASSIFICATION OF TIS PACE (Whten Dots Entered)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGEr1Uon Data Entered)

-"20. ABSTRACT

Ottt research group at ISI aims to improve the program development process by applying program
transformation to develop implementations for specifications. Following this methodology, the
development of a piece of software involves its specification in a formal specification language, and
subsequent machine-assisted transformation of that specification into an implementation
(conventional program). Subsequent maintenance and modification of software developed in this
manner is achieved by modifying the specification, and reperforming the transformational
development to derive a new implementation. Thus reuse occurs through reusing the original
specification, and reusing the original transformational development of that specification.

(- approach is distinguished by the nature of our specification language, which has been designed

to minimize the gap between informal conceptualization and formal specification. A beneficial result
of this is that maintenance and modification at the specification level is relatively straightforward.

,Further, the techniques that we-ippfy in transforming specifications into implementations are
themselves applied repeatedly, and serve to capture our programming knowledge in a conveniently
reusable manner. Consideration of an example drawn from the domain of process control illustrates
these points.

SECURITY CLASSIFICATION OF THIS PAGE(Unen Does Entered)

4%.

, -

ISI Reprint Series
ISI/RS-83-125

April 1984

Universit)

of Southern
California

Martin S. Feather

.... Reuse in the Context of aTransformation Based Methodology

Reprinted from Proceedings of the Workshop on Reusability
I.., in Programming, Newport, Rhode Island, 7-9 September 1983.

VI-

INFORMATION

IN TIUT.] -''-- 4,676 Admiralto' Wqy/Maorina del Re)/California 90292-6695

This resarch isl supp~orted by the Defense Advanced Research Projects Agency under Contract No. MDA903 81 C 0335 Views and
conclusions contained in this report are the author's and should not be interpreted as representing the official opinion or policy of DARPA,
1 he U S Government, or any person or agency connected with them%

ISI Reprint Series

This report is one in a series of reprints of articles and papers written by ISI

research staff and published in professional journals and conference
proceedings. For a complete list of ISI reports, write to

Document Distribution
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695
USA

%.

-~• "

* 94

.:::.

'4.O4

L S l

- -- 4 - , -- . 4o. . . -.. . o . - -.

''"

REUSE IN THE CONTEXT OF A TRANSFORMATION BASED METHODOLOGY

MARTIN S. FEATHER

USC / Information Sciences Institute
4676 Admiralty Way

Marina del Rey CA 90291

1. A DEVELOPMENT METHODOLOGY We stress the importance of performing modification and
, At ISl we are researching a methodology for assisting software maintenance on the specification. and then redeveloping the
, development. It is our firm belief that to make significant progress implementation from that. as opposed to tinkering with the

in this direction we must formalize, record and manipulate the implementation directly.
development process itself. The methodology we advocate is one
of constructing a formal specification expressing desired Reuse arising from modification of a specification and its
(functional) behaviour and then transforming this into an subsequent reimplementation comprise those aspects of reuse
implementation to achieve efficiency whilst preserving with which we have had the least experience, and form an area of
functionality, research we intend to pursue in the near future - see the

companion paper by Balzer for details in this regard. The other
What differentiates our research from that of others pursuing forms of reuse - that is, recurring themes in using high level

this transformational approach is the nature of our specification specification constructs and in transforming them into
language. This has been designed to minimize the distance implementations • comprise the focus of this paper We report on
between informal conceptualization of tasks and formal the achievements we have made in these issues. i.e.. what are the
specifications of the same. A consequence of this is that the features of our specification language that support reuse at the
richness of our specification language makes automatic conceptual level, and what are the techniques we have
compilation into tolerably efficient programs beyond our present accumulated to convert such specifications into implementations.
capability (and to restrict ourselves to the use of only those
specification constructs that we can presently compile would. we
feel. be a grave mistake for our or any other specification 2. SPECIFICATION LANGUAGE
language). Hence the transformation from specification to Our specification language, Gist, supports the description of the
implementation must rely upon human guidance (although it can behaviour required of a process. The motivating source of Gist's
and should benefit from machine assistance to record and capabilities is the power of natural language descriptions: Gist
perform the detailed steps). attempts to provide constructs to capture this power in a formal

Within this methodology reuse may occur at two levels: language. Briefly, these capabilities are as follows:

- Reuse at the specification level - our specification a relational and associative model of data: which
language comprises a small set of powerful captures the logical structure without imposing an

constructs which are used in stylistically recurring access regime.

ways in specifying a broad range of tasks. Reuse also
occurs when a specification is modified, either to take information derivation: which allows for global
into account desired changes inspired by feedback declarations describing relationships among data.

,% from the implementation. or to adapt that existing
specification to a similar task. historical reference: the ability to refer to past process~states.

- Reuse at the development level - when instances of constraints: restrictions on acceptable sytm
te high level specification constructs have to be bhorinthe rm o acartons

* transformed into efficient (implementation) behaviour in the form of global declarations,

constructs: stylistically similar uses of such constructs demons: asynchronous processes responding to'; ~~give ties to the same rngW f issues in seleting an •dmn:aycrnu rcse epoigt

ae implementation and in application of defined stimuli, and
• . tratnfomiatiOns tO map them into theirimpiemenabions. Reuse as OCCurs when a modified • closed system specification: the ability to implicitly

specations tomlso oe r d henaped ifid describe the behaviour of a portion of some largerspecificatin has to be redevelopd into an
impleme n, or altered reuirments for y system by descrbing the behaviour required of thepre the vrinous ffiiency tradeofsl wno so wou d whole system and the interface between that portion

inspir diffnt choices during the development of an and the rmainder
hmlementation of the same specification - in both The primary design goal behind Gist is to minimize the gap
cs rem of some of the original development may between informal conceptualization and formal specification This
take peace enables us to formally capture as much as possible of the

so

%-.

development process particularly the early stages. which would Our experience on small examples has shown that these are of
otherwise have to be performed entirely within the heads of recurring use in the development process Samples of our
designers going unrecorded and unassisted by machine tools. findings serve to illustrate both the features of Gist and the
Gist specifications are free of implementation concerns such as transformational techniques that we have accumulated to deal
efficiency, data representation and algorithms, instead their with them.
emphasis is on describing required behaviour. Gist s capabilities
support this descriptive (as opposed to prescriptive) style. Gist
specifications tend to localize the expression of features of the 4. AN EXAMPLE DOMAIN N

*.required behaviour (as opposed to implementations, which In the next section we will use examples drawn from the domain
achieve optimality by spreading information and control of a single problem to illustrate our approach The problem we
throughout the program in order to share data and activity), choose is a routing system for distributing packages into
These aspects combine to make Gist supportive of both initial destination bins. This problem was constructed by
specification. and also of later modifications to the specification representatives of the process control industry to be typical of
When modification takes the form of adding further detail, the their real-world applications. Hommel's study of various
existing specification tends to be "robust" in the sense that it programming methodologies used this problem as the
should require little or no change when adoitions do force some comparative example (Hommel 80].
change or when the modification is itself a change (to the existing
specification), the descriptive and localized aspects make it easy The figure below illustrates the routing network. At the top, a
to identify the impact of the modifications on the specification, and source station feeds packages one at a time into the network,
easy to perform the appropriate adjustments. In contrast. a less which is a binary tree consisting of switches connected by pipes.
expressive specification language would force the mental The terminal nodes of the binary tree are the destination bins.
conversion of changes at the conceptual level into changes at a
lower, more implementation -oriented, level, with the dual
disadvantages of being harder (more mental effort. less
opportunity for machine support - hence more error prone) and
failing to record some of the development process (less sorc
documentation - hence less comprehensible. and less of a basis package, ouc
for supporting future change). at source

pipe

3. DEVELOPMENT OF IMPLEMENTATION switch-.
Development of an implementation from a Gist specification package,

necessitates the elimination of uses of Gist's high-level constructs. swc
since their success in the realm of specification is at the expense
of freedom from concerns such as efficiency. data representations
and algorithms. Program transformation is the means by which
we perform such development.

We prefer to seek transformations that deal at once with whole
instances of these constructs. as opposed to unfolding instances
into lower level primitives. In adopting this approach we abandon

* . the hope for a small set of simple transformations, but retain the
'.4 -advantage of dealing with the constructs at as high a level as

possible.

For each type of construct. our research has been aimed at I I
accumulating:II I

onroiemrentatior options commonly available options ki..i jE1 . bin
for converting an instance of that construct into a
more efficient expression of the same behaviour
typically in terms of lower level constructs

* .se'ectior criteria for selecting among several Figu re 4. 1: The package router
* .* implementation options applicable to the same

instance. and When a package arrives at the source station, its intendedP
destination (one of the bins) is determined. The package is then

.Mappings to achieve the implementation options via released into the pipe leading from the source station. For a
*Sequences of equivalence preserving transformations. package to reach its designated destination bin, the switches in%

E.g., a (historical) reference to the time-ordered the network must be set to direct the package through the network
*ISsequence of objects to satisfy some predicate may be and into the correct bin.

mapped into a data structure that explicitly Stores that Packages move through the network by gravity (working against
00 Sequence code to append objects to that sequence

.4-as the) begin to satisf the predicate and code to friction), and so steady movement of packages cannot be
replce he hsloica refrene wih asimle rtrivalguaranteed. they may "bunch up" within the network and thus

make it impossible to set a switch properly between the passage of
from the data structure

%'J ..'

two such bunched packages (a switch cannot be set when there is of objects and by the insertion and deletion of relations. Each
a package or packages in the switch for fear of damaging such change is a transition from the current state into a new state.
packages). If a new package's destination differs from that of the Multiple changes may occur simultaneously in a single transition
immediately preceding package, its release from the source from one state to the next.
station is delayed a (precalculated) fixed length of time (to reduce The arrival of a package at the source is modeled by
the chance of bunching). In spite of such precautions, packages inserting the position relation to hold between that
may still bunch up and become misrouted, ending up in the wrong package and the source location.
bin: the package router is to signal such an event.li s gt s eAltering the setting of a switch is modeled by .'

Only a limited amount of information is available to the package changing the switch-setting relation. i.e., deleting the
router to effect its desired behaviour. At the time of arrival at the relationship between switch and old setting. and
source station but not thereafter, the destination of a package may inserting the relationship between switch and new

* be determined. The only means of determining the locations of setting.

* ' packages within the network is a group of senstrs (placed on the Simultaneous movement of two packages is
S.entries and exits of switches and on the entries of bins); these modeled by changing their position relations in the

sensors detect the passage of packages but are unable to same transition.
determine their identity. (The sensors are able to recognize the
passage of individual packages, regardless of bunching). 5.1.1. Specification freedom .1

The relational model of information permits the specifier to use

5. Gist's constructs a descriptive reference to an object to refer to that object.

In this section Gist's major constructs are considered in turn. The bin that is the destination of this package.

and for each we. The pipe into which this switch is set to direct

informally describe the semantics of the construct, packages.

with illustrations from the package router domain. The relational data model is a very general data representation.
The specifier need not be concerned about data access paths. for

-describe the freedoms the construct provides for instance, because any description of an object may be used as a
specification, reference to that object. Relations may be used in descriptions of

any of the oblects that participate in the relationships, In data
discuss how the construct supports the expression of base terminology, this means that the relationships are fully
changed versions of a specification when associative (or. equivalently, that the data base is fully inverted)
incorporating modifications: hypothetical The position relation (between package and

modifications to the package router serve as locationl may be used in describing a locator "The
illustrations, and iocatior that is the position of this package' and in

describing a package: "The packaoe(s) whose
-briefly describe some alternative mappings for the position is this location
construct, together with criteria for choosing among
these alternatives. Concern about the statistical distribution of these operations is

unnecessary The implementation process selects particular
physical representations for information that are appropriate for

5.1. Relational and associative model of information anticipated patterns of data storage and access
We began the discussion of Gists major features by focusing on

its underlying data model. Information in Gist is modeled simply by 5 p i n
typed objects and relations among them. 5.1.2. Specification rouse

The generality of the relational model. and the freedom from

The package router domain involves oblects of type representation concerns that it provides, facilitate the expression
package. oblects of type switch. etc. Type hierarchies of changed specifications.
are possible: for example. a switch or a bin might more
generally be considered a location A refinement to the router to check that Packages

have sufficient postage stamps to pay for delivery to
Relations among these objects model information about this their respective destinations involves extra information
domain. stamp values on packages. and required stamp

The structure of the network is modeled by relations values for destinations. Modeling this extra information

between locations . i.e.. the connection between is achieved by defining a new type. stamp values, and
source and first pipe, the connection between that first additional relationships, between packages and stamp
pipe and the switch to which it leads. etc.. wili all be values. and between destinations and required stamp

modeled by relations between those oblects The values
position of a package is modeled by a relation between
that ackage and its location: the setting of a switch
(i.e.. the outlet pipe into which the switch is currently 5.1.3. Mappings
directing packarges) is modeled by a relation berween The most general solution to implementing information storage

switch and pipe. is to support an amsociative relational data-base and leave the
Specification's insertions and retrievals of information unchanged.

The collection of objects and relations at any time during the In most cases. however, a specification does not indiscriminately
interpretation of a specification comprises what we call a "state". insert or retrieve data: rather, it displays predictable data access
Change m the domain is modeled by the creation and destruction patterns. These can be mapped into appropriate data structures

:

* *~ % , *~** ** . ~****.~% %~% % ~'. j

7. 7 7

(arrays. hash tables. etc..) to conserve space and time. 5.2.3. Mappings
If the relation that models the destination of a Since no corresponding construct is likely to be available in any

Package 6 e.. a 'elation between the package and the implementation language we might choose we must map the
bin that is its destination) is accessed in one direction derivation into explicit data structures and mechanisms to support
Only 0) asking for the Din that is the destination of a all the uses of that information scattered throughout the Program
package. then the destination information could be We have a wide range of choices as to how we might do this

Stored as a field of a record structure of information mapping.
* associated with each package

* "At one extreme, we might simply unfold the derivation at all the
Concerns for efficiency of time and space dictate the selection places where a reference to the relation is made. Having done

of data structures. Probabilistic expectations of frequency of use this. we may completely discard the relation and its derivation. .
are not explicitly described in Gist specifications. Clearly. for Wherever the specification makes reference to the
implementation purposes such information wili be of importance empty' relation on a switch. unfold the definition of
in selecticrn empty. to leave in its place an explicit search through

r i a n t m te s ri oall the pack ges to determine whether any of them are, ~~It Should be noted that many o$ the issues relating to the Ictotm ~th.
relational data model are similar to those investigated by the SETL
group fDewar et at 79] (Schonberg Schwartz & Sharir 81) and by This approach is analogous to backward inference, where
Rovner (Rovner 78]. Low [Low 76]. and Barstow [Barstow 79] computation is performed on demand and at the site of the need S

At the other extreme we might retain the relation, but distribute ",
throughout the program the code necessary to explicitly maintain5.2.Information derivation
the invariant between the derived information and the informationOften it is convenient to make use of a relationship that is

derived from other relationships Within Gist the derivation of upon which it depends.
such a relationship may be declared once and for all, and serves To maintain the derived relation of switch 'empty'.
to denote all the maintenance necessary to preserve the invariant introduce explicit storage (in the form of a non-derived
between the derived relation and the relations upon which it relation) to represent this information and introduce
depends the appropriate maintenance code everywhere in the

specification that the locations of packages might
t switcn may bS said to o emol *" tnere is no change (more precisely. at the places where a package

package wnose location is tne switch (hence empty is may become located at. or cease being located at.
a unary relation) switches)

A location may De said to oe 'below a second This approach is analogous to forward inference, where
location if it is immediately below that second location. computation is performed whenever a modification to a relevant
Or is immediately below some third location that is in predicate occurs and at the site of the change. There are two
turn below the second location (i.e.. transitive closure separate capabilities required by this mapping:
of immediately beiow)

1. determining all those locations in the specification at
5.2.1. Specification freedom which the value of a derived relation could possibly be -,

The specificational power of this construct comes from being changed. and
able to state a derivation in a single place (i.e., this construct
exhibits the Quality of "locality") and then make use of the derived 2. inserting code to do the recalculation at those
information throughout the specification. As with explicitly locations
inserted relations. data access is fully associative The latter capability can be achieved by either recomputing the

The derived 'below' relation may be accessed in defined relation from scratch. or incrementally changing its
either direction. i.e.. given a location, the relation may present value
be accessed to find either the locations which are Te

V "below' that location, or the locations which that To maintain the sequence of packages in a pipe.
location is 'below' when a package enters the pipe. concatenate thatpackage onto the end of the maintained sequence;

when a package exits, remove the package from the
5.2.2. Specification reuse front of the maintained sequence.

Derived relations provide robustness in the face of specification This is an example of a general technique we call "incremental
change both because of their localised nature. and because they maintenance", and is derived from the work of other researchers
are defined in terms of the information upon which they depend in set-theoretic settings, particularly [Paige A Schwartz 77], who
(ie. have the "descriptive" quality).

Should the structure of the package router network
be extended by addition of more pipes. switches and Many of tte Artficial Intelligence programming Ilnguagels do Provide facilities
bins, the definition of the derived relations 'empty' and for irpiementmg derived relions in terms of inference processes For example. a
'below' will continue to be valid impementlation of derived relations rnight be provided in CONNIVER lIfctDermotf &

Suseman 74] in lanhis of IF-ADDED or IF-NEEDED inthods However. AI
On the occasions when the definitions of derived relations must programming languages in which thesi facilitie are present typically do not

be modified, the localised nature of their definitions eases the task provide for the efficient execution one would desire for on optmized
of correctly making such modifications implementation. nor do these lacilities provide precely the safeltmntics desiredwithout the inclusion of satisfactory "truth mintenance capabiti., [Doyle 79),

[London 71]

53

I k

* '"P. call the technique "formal differentiation", and [Earley 75]. who 5.3.3. Mappings
" calls it "iterator inversion" Two generally applicable methods exist for mapping historical

* Unfolding a derived relation results in rederivation at points of reference into a reasonable implementation These are:

use: maintaining it results in rederivation (incrementally or 1. save the information desired in the earlier state, then

. otherwise) at points of change. It is permissible to do the modify the historical reference to extract it from the
computation for maintaining the relation at other points, but it saved information, or

must have its correct value by the time is used.

%c m is 2. modify the historical reference to rederive the desired
%". ;The choices among the implementation alternatives suggestinomtnfrmhecrntsa.

alternatives between storage and computation in the resulting information from the current stte.

program. Completely unfolding the derivation is tending towards To use the first method, it is necessary to introduce and maintain

complex rcalculation with a minimum of stored data. auxiliary data structures to store information that might be

- Maintenance simplifies retrievals at the expense of the referenced in a later state, and modify the historical references to
- maintenance operations and the extra storage to hold the extract the desired information from those introduced structures

maintained information. w
-when needed. The desire for economy of storage in an

implementation encourages the implementor to determine just
what information need be preserved see- a compact

5.3. Historical reference representation facilitating both storage and retrieval and discard

Historical reference in Gist specifications provides the ability to the information once it is no longer useful
extract information from any preceding state in the computation
history. To be prepared to answer the ouery "'what was the

destination of the last package to have passed trough
Has this package ever been at that switch?, this switch?" we could choose to remember the time-

ordered sequence of packages to have beern in the
What was the most recent package to have been in switch. or more eofcienty only te oestination of the

this switch). immediately preceding Package This latter case would

Was the bin empty when the package entered the require storage space for the identity of only a single

network7 destination bin; upon arrival of a new package. the

e "identity of its destination would be remembered in that
'." Note that the past can only be queried, not changed. space. overwriting the old information.

5.3.1. Specification freedom The alternative method for implementing historical reference is

Historical reference allows the specifier to easily and to rederve the desired information in terms of information

unambiguously describe what information is needed from earlier available in the current state (without having to retain extra

states without concern for the details of how it might be made information from past states).

available (i.e.. like derived information, this construct has the The identity of the previous package to have been at

", "descriptive" quality). Reference to the past has been studied in this switch might be derived by oeterminip which

*." .." the database world. where the freedom has been called "memory package in the network is closest t and oownnill from

independence", and temporal logic has been applied to formally the switch.

investigate the matter (see e.g.. (Sernadas 8011. Both constructs We suspect that rederivation is rarely an available option: the

may be mixed. using derived relations in expressing a historical information desired is often not derivable from current available
reference, and using historical reference in defining a derived information. When both options are possible they present the

relation. clsisor e/re ote tons an plete must ae
'. " classic store/recompute tradeoffs. An implementor must compare

Historical reference: "Was this switch ever the cost of the derivation with the cost of storage and

empty" ' maintenance of redundant information to permit simple access
"'Derived relation definition "The sequence of

packages to have been located at the source, in their 5.3.4. Idiomatic uses of historical reference
-' order of arrival there'" Certain patterns of historical reference recur frequently in Gist

This exemplifies one of Gist's strengths. the "orthogonality" of the specifications. For example, evaluating (predicate) asot (event),

constructs, i.. they may be successfully used in combination, or (expression) @sof <event> (of which What was the setting of the
".% .' switch at the time the package entered the network9 is an

%" example). For an idiom like this we can construct special purpose
5.3.2. Specification reuse mappings,2 reducing the effort that would be required during

Historical reference. like derived information, provides implementation development if a general purpose mapping

robustness as a consequence of its descriptive nature, in this technique was applied. A general-purpose mapping techniue

- case. robustness in the face of modifications that result in would require application of further simplifications to tailor the

::: .changed histories, result for the special case.
Should the topology of the network be modified, say

to feed the output of several pipes into the same bin.

then the descriptive historical reference "The
I 1 Wlsequence of packages to h ve reached the bin in their 21hig illown is no into an explicit relsbo n betw e ve o iect, "I
% order of arrivel" will continue to be valid peremet f t event d the (Predicase) / (exPession), together with code to

smintain o rliaton, mely to e th reillion whenever the event occurs nd
ihe (pred"cte hold / t axist On object defloied by the (expression>

44
% 5

N % V , .

- . -I

and as we shall see. demons too, provide freedoms related to
Other idiom that we deal with include control.

f te I object to satisfy a given predicate, Where there are several equally acceptable alternatives in the

resolution of a data reference or a control structure choice. O
the sequence of objects ordered by their time of nondeterminism makes it easy to express them all. Where there
creation or the time at which they satisfied a given are integrity conditions that must be satisfied. constraints provide
predicate. a concise (i.e.. localised) means of stating them Such integrity

conditions may serve as descriptions of the environment in which
-did event, take place before event2? the portion to be implemented is to operate. and so provide

information about the environment upon which the implementor

may rely (e.g., the non-overtaking of packages within locations is a 0
5.4. Nondeterminism and constraints property of the physical routing mechanism). Other integrity

Nondeterminism within Gist occurs in two way, When use is conditions serve as requirements on the behaviour of the f
made of a descriptive reference that denotes more than one system. implying that the implementor must implement his on
object. in such a manner that it will operate with the environment to

Set the switch to one of the switch outlets. satisfy those conditions (e.g.. that the switch be empty in i .,

or when some specifically nondeterministic control structure is change its setting).

used The conjunction of nondeterminism and constraints pi ds

Choose between "Set switch" and "Release be an extremely powerful specification technique: a specil

package" denotes those and only those behaviours that do not violate
constraints. In contrast, an implementation is characterized by

In terms of the behaviour that a Gist specification denotes. the cunning encoding of its components to interact in ways
nondeterminism gives rise to a Wit of behaviours: an implementor guaranteed to result in only valid behaviours ,.

is free to select any (non-empty!) subset3 of those behaviours as u d li o
the ones his implementation will satisfy.

The activity of setting switches is described 5.4.2. Specification reuse

nondeterministically by stating that at random times Constraints provide robustness in the face of specification

random switches set themselves to a random one of change because by their very nature they guarantee that all the

their outlet pipes. behaviours (old or new) denoted by a changed specification must
abide by all the constraints that remain in. or have been added to.

Constraints within Gist provide a means of stating integrity the specification.
conditions that must always remain satisfied. The constraint that a switch be empty in order to

Packages in some location cannot overtake one change its setting assures us that no matter how the
, another (i.e.. a package that entered some location topology of the network might be modified. we may

later than another package cannot leave that location remain assured that no new behaviour will result in
before that other package). which a switch setting changes while some package is

A switch must be empty in order to change its present in that switch.

settingt Constraints themselves are readily modified to reflect changing
criteria.

A package must never reach a wrong bin (i.e., some To further restrict when a switch setting ma" be be
bin other than its destination)' changed. say to only those occasions when tht switch :.

Within Gist. constraints are more than merely redundant checks and the pipe that leads into it are both empty. we

that the specification always generates valid behaviours; simply modify the constraint accordingly - a single

constraints serve to rule out those behaviours that would be modification at only one place in the specification ,1

invalid.

The nondeterminism of switch setIng. in 5.4.3. Mapping away constraints and nondeterminism
conunction with the constraint on packages reaching A general mapping technique to eliminate constraints is to make

correct bins. denotes only behaviours that route the each nondeterministic activity into a choice point, and to unfold
packages to the proper destination bins global constraints so as to provide tests at all points in the~~program where the constraint might possibly be violated. When a ,

violation is detected. a "failure" results: this causes backtracKing
5.4.1. Specification freedom

The constructs described in previous sections provided totemsrcnthiepitwthaalraivcoc.

freedoms related to information: nondeterminism and constraints, To place 8 queens on a cness board unde- the
constraint that no oueer may attack any Other queen
simultaneously place all the queens on the board (64.

31.e. owan may be bnour, denowd by oe mecigfic not diiieyed by the nondeterministic choices'), and after doing sc. cneck
mweentaliin Conver ly however, any behavmur dapayed by the to see whetner the no-capture constraint is vio ated -if
onowientew musebone o 1 meOf behav~ur1 0enoed beWwecscab" so. try the next choice of placements [Note that this is

a most inefficient mapping]
'sumhough O M toul w deerebie contrit t0 impoM On "h PacMag router.

i wouM fuer an ivWaboi poai beg becauw of fe condctone wootio This mapping is similar to the maintenance mapping for derived
whch ft router mKh~ has to O perM. Mft fioteblY te vo'i of Oe relations. two separate processes are required to implement the
mvemen ot packallesii. w4~ to Sit on swftch SM"bt N lft nCiftO exaviPIS. mapping:

55 h4S

- ",-:,

YF.. .7.-V .%%v '

d1. etermining all locations in the specification at which The choice between a backtracking implementation and a
the constraint might be violated (similar to predictive implementation is determined very much by the nature
determining all locations where the value of a derived of the domain of the specification. The capabilities of, and the
relation could change), and control we have of, the effectors5 (if there are any in the system

being specified), the amount of information available for making

2. inserting, at those points, code to do the checks and decisions, and the desired amount of precomputation all affect the
backtracking (whereas in the case of derived choice of algorithm. Typically, the interesting issue is to develop
relations, the code inserted would have the purpose the specification toward an implementation that embodies an
of updating the stored value of the relation). algorithm to perform the search efficiently, and not to assume that

the result has been pre-calculated and make use of it.
The second capability mentioned above as required for

mapping constraints and nondeterminism implements the
backtracking control mechanism. Our research suggests that it is 5.5. Demons
possible to intermix Gist's nondeterminism and constraints with Demons provide Gists mechanism for data-directed invocation
explicit backtracking. permitting the incremental mapping of of processes. A demon has two components a trigger and a
individual nondeterministic choice points, and of the constraints response. Whenever a state change induces a change in the
that impinge upon them (as opposed to having to simultaneously value of the trigger predicate from false to true. the demon s
map away all the nondeterminism and constraints at once). The response is invoked.
task of building the backtracking mechanism itself is trivial if our Whenever a package reaches a wrong bin (some Di
intended target language supports backtracking (as does, for other that its intended destinatior). send a signai

- example. PROLOG [Clocksin & Mellish 81]).

Backtracking. however, presupposes the ability to undo actions 5.5.1. Specification freedom
that have been executed since the last choice point. Since this is Demons are a convenient construct for situations in which we
often not possible strict backtracking is not always an option for wish to specify the execution as an asynchronous activity that
mapping to an implementation of nondeterminism arises from a particular change of state in the modeled

in controlling the switches in the routing network, we environment. This eliminates the need to identify individual

might be constrained to ensure that tne oaCkages do portions of the specification where actions might cause such a

no, react wrong destinations Backtracking change and the need to insert into such places the additional

presupposes that we nave the ability to return the code necessary to invoke the response accordingly. The
oackages to tne switching Doints afte, an error is specificational power of the demon construct is enhanced by the
detected and then send them in different directions. power of Gist's other features: for example. the triggering
Obviously. in the case of a package router whose predicate may make use of derived information
package movement mechanism is no, under our
control this is not an available option.

.. 5.5.2. Specification ruse
% An alternative technique to mapping nondeterminism into The descriptive nature of demons -. i.e.. the description of the

backtracking is a "predictive" solution. Here. the constraints are condition upon which some activity is to be started -- provides the
unfolded, but into "point' constraints rather than into calls on a robustness. Should modifications to the specification change the
backtracking failure mechanism. These point constraints are then behaviours that may occur. the demons will continue to be
pushed back, to be incorporated into the choice points, becoming triggered when and only when their triggering conditions are met.
filters that propose only those choices that guarantee no Should the topology of the router network be
constraints will be violated "Pushing" a point constraint modified so that several pipes lead to the same output
backwards over a statement is a matter of reformulating the bin (i.e., the network is no longer a tree), then the
constraint into the weakest precondition to that statement that demon that signals arrivals of misrouted packages will
guarantees execution of the statement will not violate the continue to do its signaling regardless of which pipe

* constraint. When the constraint is "pushed" all the way back to a they happen to emerge from.
choice point, it is incorporated as a filter on the choices.

When a switch becomes empty. Choose to set it in 5.5.3. Mapping away demons
% the direction that leads to the destination of the next Mapping away a demon involves identifying all places in the

package approaching the switch, program where a state change might cause a change of the value

Compromise between these two extremes is possible: we may of the demon's trigger from false to true. and then inserting code

employ a backtracking algorithm, but push some (though not all) at those places to make the determination and perform the

of the unfolded constraint(s) into the choice generators. demon's response when necessary.

In the 8-queens problem. split the nondeterminism To map away a demon which sends a signal every

into several successive choices (place the first queen, tr,7e a package reaches a wrong bin, introduce code

place the second queen and check for capture. etc.). into the places where package movement occurs to

and incorporate some of the no-capture constraint into cneck to see wnetne, tnat oackage has moved into a

the placement (by not attempting to place a bin other than its oestnation. in such a case oertorm

subsequent queen on a row already occupied by a tne signaling

queen) See [Balzer 871 for a detailed development
illustrating thMis.

5Eg ,n a routing network. the switches and conveyor

56•

%,- .4 luk ? 7 *.%%7.7'".' * I.w

This is another mapping that makes use of the capability to the switch controller which may change switch

oentify locations in the specification where the value of a settings

predicate (in this case the demon's trigger) might be affected (in It is ou' development task to implement the switch
particular. change from false to true). Here the action to be taken controller so as to interact with the other components
upon detecting such a change is to invoKe the demon's response. in such a way as to cause the desired routing of

packages. Furthermore, the switch controller has only
Demons are a potent source of nondeterminism in the limited control of. and access to. the other

behaviours denoted by a specification. This is because our components. A switch setting may only be changed
semantics for demon "response" are that a new "line of control" when it is empty of packages The only occasion upon
to perform that response is begun. and that line of control runs in which the controller mechanism may read the
parallel with the already active line(s) of control. permitting any destination of a package is when that package is at the
arbitrary interleaving that does not violate constraints. source Once released into the network, the only

In the package router. specify the behaviour of a information available to the controller is the passage of

switch via a oemor that has a random trigger
6

. na individual packages past sensors. and even then only

whose response is to set the switch to any of its outlets the face that some package has passed is available.

(further nondeterminism). Togetner with a constraint not even the identity of the package.
to Prohibi: items frorr being routed to incorrect
destinations, this would suffice to denote oenaviours in 5.6.1. Specification freedom
which switches are set at the appropriate times and in Closed system description provides the freedom to describe the
the appropriate directions to effect correct routing. behaviour required of the whole system. and to gie this
while denoting complete freedom of switch behaviour b

.* • when their settings are not crucial to the routing of any description in terms of system-wide information. The
•' packages. decomposition of the system into components is specified %
' separately. The behaviours of these components are thus

-"4,. Our experience with both specifying and mapping this form of implicitly defined to be those which in conjunction will achieve the
nondeterminism is somewhat limited. We anticipate that in many required system wide behaviour while complying with the
cases it will be preferable to map this form of nondeterministic limitations on control and information passing between

control structure while expressed concisely as demons. rather components. Maximum freedom is left to the developer to choose
than first to unfold those demons throughout the specification and any of these implicitly defined behaviours for the components to

then to have to manage the resulting disparate instances of be implemented.
nondeterminism. Our hope is that control nondeterminism
provided by demons. constrained by-constraints which prune out 5.6.2. Specification reuse

the undesired effects of arbitrary interleaving, will occur in Since system wide behaviour is specified directly. modifications
commonly occurring styles of usage, for which we will be able to to that behaviour are easy to incorporate Modifications to the
build idiomatic mappings. environment (within which the implemented portion resides) may

also be readily expressed. and the system-wide specification of

,.'. " required behaviour remains unchanged.
, 5.6. Closed system style

For specification purposes it is convenient to describe the If the physical router mechanism is adjusted to move
Fbehaviour eiredtof anoentire syste and to build that packages by means of ixeo-speed conveyc. belts sc

description urin terms of information throughout the system. How as to prevent packages from bunching up. this extra
property may simply be added to the specification of

that entire system is to be decomposed into components, the the environment. The implementor will then be able to
% restrictions on the control that components may exert over one take advantage of this extra information in his

4 another, and the access that components may have to each rederivation of an implementation (and in such a case

others information. may described separately from the overall could guarantee 100% correct routing).
system behaviour description.

In the package router we describe the behaviour Having the decomposition stated separately from system
required of the overall system, namely the routing of behaviour -- indeed, having it explicitly stated at all - supports

packages. This description is expressed in terms of modifications to the decomposition.
package locations and destinations Separaely. we If the sensors throughout the package router %
describe how the system comprises several network are enhanced to report not only the passage of -,

components: a package, but also the destination of the passing
(hbiayteofpackage, then this enhancement may be incorporated

physical routing mechanism (the binary free of into the specification of the decomposition, permitting
source, pipes. switches and bins), the implementor of the router mechanism to make use

of the extra information (which should result in a
-an uncontrollable and unpredictable reduction in the amount of storage space for data

- mechanism to move packages (gravity required by the implementation).
interacting with friction).

- an unpredictable input of packages at the 5.6.3. Mapping away reliance on system-wide control and '

source to be routed. and information V
__ __ _The general problem of mapping away such reliance is quite

difficult. Mostow calls this aspect of development
-. e aton arty iii ach mich dixii hIN M iW0111"lliwAic I "operationalization". and has investigated heuristic means for

dealing with it, [Moetow 81].
%4.

%

57 S

,"....

'1. **q

For some simple cases of reliance on system-wide information, [Dewar et al 79] Dewar. R.B.K.. Grand. A.. Liu. S. & Schwartz. J T..
techniques similar to those used for mapping away historical "Programming by refinement, as exemplified by the SETL
references might prove appropriate - introduce and maintain representation sublanguage " ACM Transactions or
auxiliary data structures to hold information when it is made Programming Languages and Systems 1. (1). 1979. 27-49
available in order to be able to supply that information when it is
needed, or look for ways to derive the required information from (Doyle 79] Doyle, J., "A truth maintenance system " Artificial

• • other information that is available. Intelligence 12. (3) 1979. 231-272

6. SUMMARY AND FUTURE WORK [Earley 75] Earley. J.. "High level iterators and a method for
Gist's combination of constructs makes for a good specification automatically designing data structure representation."

language, and, we anticipate, will support reuse at the Computer Languages 1. (4). 1975, 321-342.
specification level. We attribute Gist's success to its purposeful
design -- modeled on the power of natural language descriptions, [Fickas 82] Fickas. S.F., "Automating the transformational

S-brought together into a coherent formal framework. development of software ", Ph.D. thesis. University of
The development methodology we advocate is one of California, Irvine. 1982

transformation of specifications to obtain implementations. The
Z.'o success or failure of this methodology for supporting reuse rests [Hommel 80] Hommel. G.. Vergleich verschiedener

upn oSpezifikationsverfahren am Beispiel eine' Paketverteilanlage,
"- upon our ability to reperform the transformanal developmentAugust

upon a modified specification. This is the crucial outstanding
research issue. 1980.

The mappings for Gist constructs will Comprise tne primitive', •ThemapingsforG~s contruts ill ompisethe nmi~ve [London 78] London, P., "A dependency-based modelling
steps from which Gist developments will be composed and the

choice criteria between mappings wil form the basis for selection mechanism for problem solving," in AFIPS Conference

of appropriate mappings. It has been recognised that Proceedings, Vol. 47, pp. 263.274. 1978.

transformational developments must be objects in their own right. [Low 76] Low. JR., Interdisciplinary Systems Research. Volume
so that they may be applied to specifications to produce 16: "Automatic Coding: Cnoice of Data Structures".
implementations. and appropriately modified tc be applied to Birkhauser Verlag. Basel & Stuttgart. 1976.
modified specifications [Darlington & Feather 80, The language
for recording such developments must be rich enougth to capture [McDermott & Susman 74] McDermott, D. & Sussman. G. J.. The

.4 the implementor's goal structure -. motivations and design CONNIVER reference manual. MIT. Technical Report Memo
decisions -- [Sintzoff 80] and [Wile 82]. The system that applies 259a,N1974.

4 , such developments must deal with this goal structure. methods for
achieving goals. and selection criteria for choosing among jMostow 81] Mostow. D.J.. "Mechanical transformaion of task
competing methods. and. for the foreseeable future. will not be heuristics into operational procedures "" Ph.D. thesis.
fully automatic. so must rely upon interaction with a skilled Computer Science Department CarnegieMellon Universty

,,,.,implementor. See [Fickas 82] for a first cut at such a system 1981.

Acknowledgements [Paige & Schwartz 77] Paige. R. & Schwartz. J. "Expression
continuity and the formal differentiation of algorithms." in

This research was supported by Defense Advanced Research Proceedings. 4th ACM POPL Symposiur. .os Angeles

Projects Agvncy contract MDA 903 81 C 0335. Views and pp. 58-71. 1977.
conclusions contained in this document are those of the author

_ -' and should not be interpreted as representing the official opinion [Rovner 78] Rovner, P., "Automatic representation selection for
or policy of DARPA. the U.S. Government. or any other person or associative data structures," in Proceedings. AFIPS National
agency connected with them. I would like to thank the other Computer Conference. Anaheim. California. pp. 691-701

- -p. .members (past and present) of the ISI Transformational AFIPS Press, New Jersey. June 1978.
Implementation group: Bob Balzer. Don Cohen. Steve Fickas. Neil
Goldman. Phil London. Jack Mostow. Bill Swartout and Dave Wile. [Schonberg. Schwartz & Sharir 81] Schonberg. E.. Schwartz. J.T.

& Sharir. M.. "An automatic technique for selection of data
References representations in SETL programs." ACM Transactions or

Programming Languages and Systems 3. (2). April 1981.
(Balzer 81] Balzer. R. "Transformational Implementation. An 126.143.

Example." IEEE Transactions on Software Engineering SE-7.
(1). 1981,3-14, [Sernadas 80] Sernadas. A., "Temporal aspects of logical

procedure definition," Information Systems 5. (3). 1980.

[Barstow 79] Barstow. D.R.. "Knowledge-Based Program 167.187.
.%..Construction". Elsevier North-Holland. 1979.C u " e o o 1[Sintzoff 80] Sintzoff, M.. "Suggestions for composing and

(Clocksin & Mellish 81] Clocksin, W.F. & Mellish. C.S., specifying program design decisions." in 4th International
Programming in Prolog. Springer Verlag, Berlin, 1981. Symposium on Programming. Paris. April 1980.

(Darlington & Feather 80] Darlington. J. & Feather. M.S.. "A [Wile 82] Wile. D. S.. Program developments formal explanations
oftransformational appmroac to program modifcaton'. o1 ;mplementations, ISI 4676 Admiralty Way. Marina del Re

Department of Computing and Control. Imperial College. CA 90291. Technical Report RR-82-99. 1982 To appear in
London. Technical Report 80/3. 1960 CACM

_,,,

U

'% c*M .4•• % %•• q 1 • •• • • •

Vi.

.... A

AAl

"r rl

